4 research outputs found

    Searching for synergy: combining systemic daptomycin treatment with localised phage therapy for the treatment of experimental pneumonia due to MRSA.

    Get PDF
    OBJECTIVE Bacteriophages (or phages) are viruses which infect and lyse bacteria. The therapeutic use of phages (phage therapy) has regained attention in the last decades as an alternative strategy to treat infections caused by antimicrobial-resistant bacteria. In clinical settings it is most likely that phages are administered adjunct to antibiotics. For successful phage therapy it is therefore crucial to investigate different phage-antibiotic combinations in vivo. This study aimed to elucidate the combinatorial effects of systemic daptomycin and nebulised bacteriophages for the treatment of experimental pneumonia due to methicillin-resistant Staphylococcus aureus (MRSA). RESULTS Using a rat model of ventilator-associated pneumonia caused by MRSA, the simultaneous application of intravenous daptomycin and nebulised phages was not superior to aerophage therapy alone at improving animal survival (55% vs. 50%), or reducing bacterial burdens in the lungs, or spleen. Thus, this combination does not seem to be of benefit for use in patients with MRSA pneumonia

    White blood cell count in birds: evaluation of a commercially available method

    No full text
    Abstract Background To conduct a hematological analysis of avian blood samples, standard automated cell counting is unreliable because all avian blood cells are nucleated. Therefore, quantitative white blood cell counting in birds is still performed manually, whereby the Natt-Herrick method is widely used in veterinary laboratories. The aim of this study was to evaluate a new commercially available single test system for avian white blood cell counting, the Natt-Herricks-Tic®, which would allow easy in-house analysis by clinicians or technicians. A total of 40 avian ethylenediaminetetraacetic acid (EDTA) blood samples from 24 different species were included in the study. To assess method agreement, each blood sample was analyzed for total white blood cell count with the test method and the Natt-Herrick reference method. To determine the imprecision of the reference method and the Natt-Herricks-Tic® method, the noncorrected white blood cell count was determined ten consecutive times from one avian EDTA blood sample for each method. Results The Natt-Herricks-Tic® method performed well concerning staining quality and countability of the granulocytes by the hemocytometer. In the agreement study, the Natt-Herricks-Tic® method showed a small proportional systematic error with a small positive mean bias of 282 white blood cells/μL but had wide 95% limits of agreement (− 4683 cells/μL to 5227 cells/μL), indicating random error. The precision study resulted in a coefficient of variation of 16% for the Natt-Herricks-Tic® method (the mean ± standard deviation: 9.7 ×  103/μL ± 1.5 × 103/μL) and 23% (the mean ± standard deviation: 7.9 × 103/μL ± 1.8 × 103/μL) for the reference method. Conclusions The Natt-Herricks-Tic® method showed acceptable precision for a manual method and demonstrated good agreement with the reference method. It can be recommended as a reliable and suitable method for determining white blood cell counts in avian EDTA blood if nonstatistical quality control measures are used in the daily routine. The application of individual reference intervals for the interpretation of white blood cell counts in birds may improve the diagnostic performance of this important analyte in a clinical setting

    White blood cell count in birds: evaluation of a commercially available method

    Get PDF
    BACKGROUND: To conduct a hematological analysis of avian blood samples, standard automated cell counting is unreliable because all avian blood cells are nucleated. Therefore, quantitative white blood cell counting in birds is still performed manually, whereby the Natt-Herrick method is widely used in veterinary laboratories. The aim of this study was to evaluate a new commercially available single test system for avian white blood cell counting, the Natt-Herricks-Tic®, which would allow easy in-house analysis by clinicians or technicians. A total of 40 avian ethylenediaminetetraacetic acid (EDTA) blood samples from 24 different species were included in the study. To assess method agreement, each blood sample was analyzed for total white blood cell count with the test method and the Natt-Herrick reference method. To determine the imprecision of the reference method and the Natt-Herricks-Tic® method, the noncorrected white blood cell count was determined ten consecutive times from one avian EDTA blood sample for each method. RESULTS: The Natt-Herricks-Tic® method performed well concerning staining quality and countability of the granulocytes by the hemocytometer. In the agreement study, the Natt-Herricks-Tic® method showed a small proportional systematic error with a small positive mean bias of 282 white blood cells/μL but had wide 95% limits of agreement (- 4683 cells/μL to 5227 cells/μL), indicating random error. The precision study resulted in a coefficient of variation of 16% for the Natt-Herricks-Tic® method (the mean ± standard deviation: 9.7 ×  10/μL ± 1.5 × 10/μL) and 23% (the mean ± standard deviation: 7.9 × 10/μL ± 1.8 × 10/μL) for the reference method. CONCLUSIONS: The Natt-Herricks-Tic® method showed acceptable precision for a manual method and demonstrated good agreement with the reference method. It can be recommended as a reliable and suitable method for determining white blood cell counts in avian EDTA blood if nonstatistical quality control measures are used in the daily routine. The application of individual reference intervals for the interpretation of white blood cell counts in birds may improve the diagnostic performance of this important analyte in a clinical setting
    corecore